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Abstract. The Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form

the land surface component in the family of Canadian Earth System Models (CanESM). Here, CLASS-CTEM is coupled

to Environment and Climate Change Canada (ECCC)’s weather and greenhouse gas forecast model (GEM-MACH-GHG) to

consistently model atmosphere-land exchange of CO2. The coupling between the land and the atmospheric transport model

ensures consistency between meteorological forcing of CO2 fluxes and CO2 transport. The procedure used to spin up carbon5

pools for CLASS-CTEM for multi-decadal simulations needed to be significantly altered to deal with the limited availability of

consistent meteorological information from a constantly changing operational environment in the GEM-MACH-GHG model.

Despite the limitations in the spin up procedure, the simulated fluxes obtained by driving the CLASS-CTEM model with

meteorological forcing from GEM-MACH-GHG were comparable to those obtained from CLASS-CTEM when it is driven

with standard meteorological forcing (CRU-NCEP). This is due to the similarity of the two meteorological datasets in terms10

of temperature and radiation. However notable discrepancies in the seasonal variation and spatial patterns of precipitation

estimates, especially in the tropics, were reflected in the estimated carbon fluxes, as they significantly affected the magnitude

of the vegetation productivity and, to a lesser extent, the seasonal variations in carbon fluxes. Nevertheless, the simulated fluxes

based on the meteorological forcing from the GEM-MACH-GHG model are within the range of other estimates from bottom-

up or top-down approaches. Indeed, when simulated fluxes obtained by driving the CLASS-CTEM model with meteorological15

data from the GEM-MACH-GHG model are used as prior estimates for an atmospheric CO2 inversion analysis using the

adjoint of the GEOS-Chem model, the retrieved CO2 flux estimates are comparable to those obtained from other systems in

terms of the global budget and the total flux estimates for the northern extratropical regions, which have good observational

coverage. In data poor regions, as expected, differences in the retrieved fluxes due to the prior fluxes become apparent, but fall

within the uncertainty bounds based on multi-inversion analyses. The coupling of CLASS-CTEM to an atmospheric transport20

model with carbon assimilation capabilities also provides insights into the limitations of CLASS-CTEM simulated CO2 fluxes
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through comparisons of simulated atmospheric CO2 with observations at selected flask stations. This capability can be used to

continually assess and improve the terrestrial ecosystem modules of the CLASS-CTEM model.

Copyright statement. TEXT

1 Introduction

Terrestrial ecosystems play a crucial role in the global climate-carbon system. Therefore, there is a need to better understand5

terrestrial biospheric processes related to the carbon cycle in order to obtain more reliable projections of their behavior under

a changing climate. Given the great heterogeneity of vegetation and soils, the coverage and accuracy of the flux measurements

are not sufficient for obtaining large-scale flux estimates with high confidence (Jung et al., 2009; Beer et al., 2010). As a result,

considerable efforts have been made to develop terrestrial ecosystem models (TEMs) (whether simple regression or process-

oriented) in order to quantify the magnitude, geographical distribution, and evolution of sources and sinks of carbon at regional10

and global scales (Potter et al., 1993; McGuire et al., 2001; Sitch et al., 2003; Thornton et al., 2005; Krinner et al., 2005;

Reichstein et al., 2005; Badawy et al., 2013; Arora and Boer, 2005; Melton and Arora, 2016). However, systematic errors and

uncertainties in the models can result from driving or forcing data (Jung et al., 2007; Clein et al., 2007; Zhao et al., 2006;

Garnaud et al., 2014; Dalmonech et al., 2015; Anav et al., 2015; Wei et al., 2014), process formulation (also called model

structure) (Sitch et al., 2015), model parameter specification, and initial conditions (Carvalhais et al., 2008, 2010; Melton et al.,15

2015; Zhu and Zhuang, 2015), leading to differing estimates of CO2 fluxes from different models (McGuire et al., 2001; Piao

et al., 2013; Sitch et al., 2015). Such differences in TEMs are among the main sources of uncertainty in future projections

from coupled carbon-climate models (Anav et al., 2013; Friedlingstein et al., 2006; Arora et al., 2013; Friedlingstein et al.,

2014). Therefore, there is a need to evaluate the performance of TEMs in order to identify and diagnose their weaknesses and

strengths and ultimately reduce model uncertainties. Indeed, this is the motivation behind TEM multimodel intercomparisons20

efforts such as the Multi-scale Synthesis and Terrestrial Ecosystem Model Intercomparison Project (MsTMIP) (Huntzinger

et al., 2013).

Inverse models (which relate concentrations to fluxes using an atmospheric transport model) are powerful tools to quantify

carbon fluxes over large regions (Rödenbeck et al., 2003; Peters et al., 2007; Peylin et al., 2013) and can be used to evaluate the

TEM results. However, inverse models suffer from deficiencies and uncertainties (Peylin et al., 2013) arising from transport25

errors, choice of observation network, observation uncertainties, and prior flux errors. Alternatively, there are carbon cycle data

assimilation systems (CCDAS), which couple the strengths of the top-down (inversion) and bottom-up (i.e. TEM) approaches

by embedding a TEM within a comprehensive climate model and using measurements from multiple streams to constrain

the TEM (Scholze et al., 2003; Rayner et al., 2005; Koffi et al., 2013). The benefit is that biospheric models can then be

validated on the global scale using atmospheric measurements of CO2 that integrate the CO2 signal at various spatial and30

temporal scales. Theoretically, in CCDAS, parameters of a TEM can also be optimized to improve its fit to atmospheric CO2
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observations (Scholze et al., 2003; Rayner et al., 2005; Koffi et al., 2013; Kaminski et al., 2013), which can potentially yield

greater understanding about underlying processes, and thus can help to improve the model performance.

Comprehensive Earth System Models need to include TEMs because the ecosystem responds to a changing climate. How-

ever, weather and carbon fluxes are also interconnected so that coupled weather and CO2 prediction models operating on

weather or seasonal timescales can also benefit from online TEMs. Specifically, if such a coupled model uses a prior flux esti-5

mate of terrestrial biosphere activity from an offline TEM, inconsistencies may arise when the TEM’s meteorological driving

data differs from that in the weather model. For example, at a given point in time, a TEM’s grid cell might have experienced

sunny weather and thus produced large CO2 uptake whereas the weather model may indicate cloudy conditions and reduced

CO2 uptake. An online TEM constrained by the model’s weather would have predicted this reduced CO2. If such inconsistent

CO2 predictions are used to constrain inverse models there is a risk of misattributing some of the model-data mismatch to10

the flux estimate. Forecasting systems that integrate land and ocean CO2 fluxes within numerical weather prediction (NWP)

models have recently been developed (Agusti-Panareda et al., 2014; Ott et al., 2015) to produce short term predictions of

atmospheric CO2.

At Environment and Climate Change Canada (ECCC), a Carbon Assimilation System (EC-CAS) (Polavarapu et al., 2016)

is being developed to assimilate satellite and in situ data to generate hindcasts of atmospheric CO2 and estimates of regional15

fluxes of CO2. A key objective of the work here is to assess the viability of land surface fluxes of CO2 from the Canadian

Terrestrial Ecosystem Model (CTEM) (Melton and Arora, 2014), coupled to the Canadian Land Surface Scheme (CLASS)

(Verseghy, 2012), as a source of a priori biospheric fluxes of CO2 for EC-CAS and other CO2 flux inversion systems. EC-

CAS is being created by adapting the operational weather prediction model GEM-MACH (Global Environmental Multi-scale

- Modelling Air quality and CHemistry) (Moran et al., 2010; Robichaud and Ménard, 2014; Makar et al., 2015) for greenhouse20

gasses (called GEM-MACH-GHG hereafter, see Section 2.2). CLASS-CTEM is a process-based TEM which simulates the

exchange of carbon, water and energy fluxes between the land surface and the atmosphere. It is similar in level of complexity

to other TEMs (such as CASA (Potter et al., 1993) or SiB (Sellers et al., 1996)) which have been used for flux inversions and

which have participated in multimodel intercomparisons such as that of Huntzinger et al. (2012). In recent studies (Melton

and Arora, 2014; Melton et al., 2015; Melton and Arora, 2016; Badawy et al., 2016), CLASS-CTEM was calibrated based on25

observation-based climate data from the Climate Research Unit (CRU) (Harris et al., 2014) combined with reanalysis fields

from the National Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996).

Although incorporating CLASS-CTEM within EC-CAS is potentially mutually beneficial, the incorporation of a TEM de-

signed for Earth System Modelling (decadal timescales) into a data assimilation system designed for short timescales (i.e.

months to a few years) is not without its challenges. For example, the spin-up of carbon pools to present climate needs to be30

merged with the switch in climate data from reanalyses to that from the weather forecasting model (e.g. EC-CAS). The chal-

lenge is that operational weather forecasting systems are, by definition, constantly changing so that long archives of consistent

analyses (i.e. with the same horizontal or vertical resolution or model coordinates or variable, etc.) are not available (see also

Agusti-Panareda et al. (2016) for example), contrary to the case of reanalyses (e.g. ERA-Interim (Dee et al., 2011) or MERRA

(Rienecker et al., 2011)). Given that the spin-up procedure is known to impact TEM predictions (Wutzler and Reichstein, 2007;35
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Carvalhais et al., 2008, 2010), how will this affect the use of CLASS-CTEM in the flux estimation context? In addition, the

environmental drivers of TEMs also impact their results, so will the change in the climate forcing of CLASS-CTEM nega-

tively impact its predictions on these short "climate timescales"? Garnaud et al. (2014) show that carbon pools and fluxes from

CLASS-CTEM are sensitive to climate datasets for the case of a limited area domain (North America). On the other hand,

large changes in fluxes are not necessarily detectable by observing systems such as Greenhouse Gases Observing SATellite5

(GOSAT) (Ott et al., 2015) so such differences may not be perceptible in flux inversion results. Finally, given that there is

already a well-documented sensitivity to prior flux estimates in data sparse regions (Gurney et al., 2004; Peylin et al., 2013), do

such deficiencies in spin-up procedure and environmental drivers matter? In other words, despite the unavoidable imperfections

in coupling a TEM from an Earth System Model to a Carbon Assimilation System focussed on short climate timescales, will

the flux inversion results obtained using CTEM fall within the range of uncertainty encompassed by an ensemble of recognized10

flux inversion systems? The goal of this work is to answer these questions.

We begin in Section 2 with a description of the various models and datasets involved in this study, folowed by the experimen-

tal design (Section 3). In order to interpret differences in fluxes resulting from the change in meteorological forcing, we first

compare the quality of the meteorological inputs from GEM-MACH-GHG against the standard climate forcing (CRU-NCEP)

that was used to drive CLASS-CTEM, as well as against independent sources of data (Section 4.1). Then, we examine the15

sensitivity of the simulated carbon fluxes to the change in meteorological forcing to determine whether biases in the simulated

carbon fluxes can be attributed to biases in the meteorological variables (Section 4.2). The simulated fluxes are assessed both

directly as well as indirectly through their impact on CO2 concentrations. Finally, in Section 4.3, the a priori fluxes from

CTEM are used in a flux inversion system and the results are analyzed in terms of the seasonal cycle and annual totals of the

optimized fluxes and the a posteriori CO2 concentrations. The conclusions are presented in Section 5.20

2 Models and Data

Before presenting the experimental design, we first introduce the TEM and the coupled meteorological and tracer transport

model to which the TEM will be coupled. Then, CRU-NCEP and other datasets used to assess the various sources of climate

forcing are described, followed by the experimental methodology.

2.1 CLASS-CTEM25

The coupled CLASS-CTEM model used here is based on CLASS v3.6 (Verseghy, 2012) and an updated version of CTEM

v1.2 (Melton and Arora, 2014) and runs globally on a Gaussian 128×64 grid that corresponds to ∼ 2.8◦ × 2.8◦ grid spacing.

CLASS calculates the biophysical exchange of energy and water fluxes between the land surface (soil, snow, and vegetation

canopy) and the atmosphere. The model includes three soil layers, which extend to a total depth of 4.1 m, and one vegetation

canopy and one snow layer. The model solves for the energy and hydrological balances at each grid cell using a half-hourly time30

step. The land surface of each grid cell is divided into four subareas: bare soil, vegetation, snow over bare soil and snow with

vegetation. The vegetation within a grid cell, in CLASS, can be composed of 4 PFTs (Plant Functional Types): needleleaf trees,
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broadleaf trees, crops and grasses. For each PFT, prescribed physiological characteristics, such as albedo, annual maximum

and minimum leaf area index (LAI), vegetation height, canopy mass, and rooting depth have to be specified. When coupled

to CTEM, these structural vegetation attributes are dynamically simulated by CTEM with a daily time step and then passed to

CLASS.

CTEM is a process-based terrestrial biosphere model that grows vegetation from bare ground and simulates the main pro-5

cesses governing carbon fluxes between the land biosphere and atmosphere. The model is parametrized and designed to simu-

late land-atmosphere exchanges of carbon through photosynthesis, ecosystem respiration (sum of autotrophic and heterotrophic

respiration), phenology, turnover, mortality, allocation, fire and land use change (Arora, 2003; Arora and Boer, 2005; Melton

and Arora, 2016). The model is represented by three living vegetation pools (leaves, stems, and roots) and two dead carbon

pools (soil organic matter and litter). The terrestrial ecosystem processes are calculated for nine PFTs: Needleleaf evergreen,10

Needleleaf deciduous, broadleaf evergreen, broadleaf cold deciduous, broadleaf drought/dry deciduous, crops (C3 and C4) and

grasses (C3 and C4). When coupled, CTEM provides time-varying vegetation structure attributes to CLASS and the calculated

variables for the nine PFTs are averaged (weighted by the fractional coverage of each PFT) to obtain the four PFTs in CLASS

that share similar functionality.

Within CTEM, photosynthesis and leaf respiration sub-modules operate on a half-hourly time step as in CLASS in order15

to model the effect of the CO2 concentration on stomatal conductance. Other terrestrial ecosystem processes, including stem,

root, and heterotrophic respiration are modelled at a daily time step. Recently, Badawy et al. (2016) modified CTEM to add the

capability to simulate all respiratory fluxes at the same time step as CLASS (i.e. half-hourly) in order to model their diurnal

variation caused by subdiurnal signals in the driving climate data. The current version of CTEM does not include the nitrogen

cycle and its interactions with carbon cycle. Nevertheless, the model constrains the response of terrestrial photosynthesis to20

elevated CO2 via an empirical formulation based on experimental plant growth studies (Arora et al., 2009). The model structure

and its parametrizations are documented in Arora (2003), Arora and Boer (2005), and Melton and Arora (2016), in which a

comprehensive description of model subroutines is provided.

Besides the meteorological inputs (shortwave and longwave downward radiation, air temperature, precipitation, specific

humidity, surface pressure, wind speed (see Section 2.4)), the model requires data on soil texture (i.e. percentage of sand and25

clay for the three soil layers), fractional vegetation coverage for each PFT, organic matter content, permeable soil depth, and

atmospheric CO2. The soil texture information is based on Zobler (1986). The vegetation fractional coverage for the nine

PFTs in CTEM are adapted from Arora and Boer (2010) but using the HYDE v3.1 data set for crop area (Hurtt et al., 2011) to

reconstruct the historical land cover. The model uses inputs of annual mean atmospheric CO2 concentrations, which are based

on phase 5 of the Coupled model Intercomparison Project (CMIP5) (Meinshausen et al., 2011).30

2.2 GEM-MACH-GHG

GEM-MACH is based on the dynamics and physics of the Global Environmental Multiscale (GEM) model (Côté et al., 1998a;

Girard et al., 2013) at the Canadian Meteorological Centre (CMC). GEM is used for operational weather forecasting in both

global and regional (North America) domains, whereas GEM-MACH includes an online chemical model that is fully integrated
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into the meteorological model to provide air quality forecasts over North America. GEM-MACH-GHG is a variant of GEM-

MACH that removes the reactive chemistry and replaces it with climate-chemistry (e.g. OH climatology). In addition, a number

of modifications to GEM-MACH were made, including the implementation of a mass conservation scheme, and modifying the

vertical mixing in the boundary layer. A horizontal resolution of 0.9◦ (400×200 grid points), and a time step of 30 minutes are

used.5

In this study, the meteorological fields required to drive CLASS-CTEM are produced from GEM-MACH-GHG following

the same approach as in Polavarapu et al. (2016) for the 2009-2010 period. Prior to 22 June 2009, the operational analyses

were produced using a model with a lid at 10 hPa. Since that date, the operational model has used a much higher lid of 0.1

hPa and since the period of interest for greenhouse gas simulations commences with the launch of the Greenhouse Gases

Observing Satellite (GOSAT) (Kuze et al., 2009; Yokota et al., 2009) in 2009, GEM-MACH-GHG uses the more recent model10

configuration. As a result, it is difficult to make use of CMC analyses prior to 22 June 2009. Thus, early in 2009, these analyses

were supplemented by CMC archives of the "parallel run" (the system during its testing phase) and a preliminary run. Given

that GEM-MACH-GHG was under development during this study, only a few years were simulated (2009-2010). There will

always be an unsatisfactory length of analyses available for a TEM spin up period whenever operational weather forecast

system is involved (e.g. Agusti-Panareda et al. (2016) also had similar issues). Moreover, greenhouse gas assimilation systems15

are constrained (by time, computational expense and the observing system) and thus often focus on a few years of study at

one time (e.g Deng et al. (2014, 2016)). Thus, the challenge is to merge this small dataset into the spin-up procedure used

for the TEM. As we shall see, despite this considerable challenge, the resulting impact on fluxes are still within the bounds

of uncertainty provided by an ensemble of TEMs. The meteorological fields are initialized at the start of each 24h cycle with

archived analyses from the CMC which were produced by the previously operational four-dimensional variational (4D-Var)20

data assimilation system (Charron et al., 2012), interpolated to GEM-MACH-GHG’s 0.9◦ resolution. The 24-hour forecasts of

shortwave and longwave radiation, surface temperature, wind speed, surface pressure, total precipitation, and specific humidity,

were generated every 30 minutes, and then interpolated to the CLASS-CTEM grid.

2.3 GEOS-Chem

Previous inversion studies show that optimized fluxes are sensitive to prior fluxes particularly for regions that are poorly25

constrained by atmospheric observations such as the tropics (Peylin et al., 2013). In order to assess the quality of NEE from

CTEM-GEM in comparison to other flux estimates, it is necessary to perform some inversion studies. Ideally, such inversions

would be conducted with GEM-MACH-GHG but since the assimilation capability of EC-CAS is still under development, an

alternative inversion system based on the GEOS-Chem model (http://geos-chem.org) is used. The GEOS-Chem model has

often been used to simulate atmospheric CO2 (e.g. Suntharalingam et al. (2004); Nassar et al. (2010)). This model is a global30

3-D chemical transport model driven by assimilated meteorology from the Goddard Earth Observing System (GEOS-5) of the

NASA Global Modelling and Assimilation Office (GMAO). Nassar et al. (2010) described an update of the atmospheric CO2

simulation in GEOS-Chem. In this study, the model has a horizontal resolution of 4◦ × 5◦, with 47 vertical layers from the

surface to 0.01 hPa. The assimilation system is a 4D-Var data assimilation system in which a set of scaling factors is optimized
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to adjust the fluxes in each model grid box to better reproduce the observations over a given time period. In the 4D-Var system,

the adjoint of the GEOS-Chem model is used to optimize the fluxes. Details of the GEOS-Chem adjoint model are given in

Henze et al. (2007) and a description of its application for inverse modeling of atmospheric CO2 is provided in Deng et al.

(2014, 2016).

2.4 CRU-NCEP5

The observation-based 0.5◦ monthly climatology from the Climate Research Unit (CRU, version TS3.2) (Harris et al., 2014)

and the∼ 2.5◦, 6-hourly reanalysis fields from the National Centers for Environmental Prediction (NCEP) (Kalnay et al., 1996)

were combined to produce the CRU-NCEP global climate data set (Viovy, 2016) that has been described in Wei et al. (2014).

The CRU-NCEP dataset provides globally gridded (0.5◦× 0.5◦) 6-hourly time-varying climatology products that covers the

period 1901-2014. The input data from CRU-NCEP includes shortwave and longwave radiation, surface temperature, wind10

speed, surface pressure, total precipitation, and specific humidity. These climate data were interpolated to the CLASS-CTEM’s

grid and disaggregated to a half-hourly time step as described in Arora and Boer (2005), and Melton and Arora (2014).

2.5 Other Datasets

To evaluate the quality of the GEM driving data, the forecasted fields of shortwave radiation, temperature, and precipitation for

2009 and 2010 are compared with CRU-NCEP, and both are evaluated against the CRU dataset and the ERA-Interim reanalysis15

(hereafter called ERAI) of the European Centre for Medium-Range Weather Forecasts (ECMWF)(Berrisford et al., 2011; Dee

et al., 2011). The 2.5◦ monthly ERAI data is available at the ECMWF data server.

To assess the impact of using alternative driving data on the simulated fluxes, the CLASS-CTEM fluxes obtained with

GEM and CRU-NCEP meteorology are compared and evaluated against independent observation-based flux estimates and

other model results. For example, the simulated GPP was compared with the observation-based estimates of gross primary20

productivity (GPP) produced by Beer et al. (2010) (called B10 hereafter). They are based on eddy covariance flux data and

several data-driven models, and averaged for the period 1998 to 2005. The model results are also compared with the multi-year

average 3-hourly GPP and ecosystem respiration (Reco) from the Boreal Ecosystem Productivity Simulator (BEPS) (Chen

et al., 2012), in which the annual terrestrial ecosystem exchange imposed in each grid box (4◦ × 5◦) is neutral (Deng and

Chen, 2011) (i.e. GPP = Reco). BEPS is driven by NCEP reanalysis dataset. Finally, the model results are evaluated using the25

a posteriori CO2 fluxes from the CarbonTracker data assimilation system (Peters et al., 2007) (version CT2013B) available at

http://carbontracker.noaa.gov. All datasets used in evaluating the model’s results are re-gridded to the CLASS-CTEM grid.

We evaluate the results of the inversion analyses (described in section 3.3) using the GEOS-Chem model by comparing

the a posteriori CO2 fields to atmospheric CO2 observations from the Total Carbon Column Observing Network (TCCON)

from which the column-averaged dry-air mole fractions of CO2 (XCO2) are retrieved (Wunch et al., 2011). TCCON data30

were obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC) (http:

//tccon.ornl.gov/). For the comparisons, we use observations from the current TCCON GGG2014 data set from 13 different

sites (Table 1) (see also Deng et al. (2014)) in 2009 and 2010. We also evaluate the inversion analyses using aircraft data from
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the HIAPER Pole-to-Pole Observations (HIPPO) project (http://hippo.ornl.gov/). We use the 10-second averaged data from

the HIPPO-1, HIPPO-2, HIPPO-3 campaigns (Wofsy, 2011; Wofsy et al., 2012), for 9 to 21 January 2009, 31 October to 22

November 2009, and 24 March to 16 April 2010, respectively.

3 Experimental Design

When coupling CLASS-CTEM to EC-CAS, we first identify a necessarily-imperfect spin-up procedure that transitions from5

climate data forcing from a standard dataset such as CRU-NCEP to a short sequence of operational meteorological analyses

(Section 3.1). Once fluxes are available from CLASS-CTEM for CRU-NCEP meteorology with the standard spin-up procedure

and from GEM-MACH-GHG with the modified spin-up procedure, the simulations of CO2 that are performed with GEM-

MACH-GHG are described in Section 3.2. Finally, the a priori fluxes from CLASS-CTEM are tested in a flux inversion

experiment which is described in Section 3.3.10

3.1 CLASS-CTEM Runs

To test the sensitivity of the simulated carbon fluxes to the meteorological forcing, we performed a series of experiments with

CLASS-CTEM using two different meteorological inputs from (1) CRU-NCEP (hereafter called CTEM-CRUNCEP), which

has been used to drive CLASS-CTEM simulations in previous studies (Melton and Arora, 2014; Melton et al., 2015; Badawy

et al., 2016), and (2) GEM-MACH-GHG (hereafter called CTEM-GEM). For the CTEM-CRUNCEP run, the model was first15

initialized (to represent the pre-industrial period 1861-1900) by running it to equilibrium using repeated 1901-1940 CRU-

NCEP climate, a constant globally uniform CO2 of 286.37 ppm, and a fixed vegetation fractional coverage corresponding to

the year 1861 until carbon pools and fluxes were in steady state (zero mean annual net ecosystem exchange (NEE)). The model

was then run from 1901-2010 using varying CO2 concentrations and CRU-NCEP meteorology.

For the CTEM-GEM run, the meteorological inputs from GEM-MACH-GHG were only available for 2009-2010 at the time20

of this study, and hence no global climate data available for the pre-industrial run. In general, reanalysis output begins around

1949 (e.g. NCEP-NCAR reanalyses) when the observing system had sufficient coverage, and as noted earlier, analyses from

operational systems are restricted to much shorter and recent periods because of the constant change in model, observations

and assimilation schemes. Therefore, the spin-up simulation was performed with a constant uniform CO2 concentration of

387.4 ppm (corresponding to 2009) and a fixed vegetation fractional coverage corresponding to the same year. The spin-up25

simulations were driven with repeated meteorological data for the 2009-2010 period until model pools reached equilibrium.

The transient simulation for the 2009-2010 period was then initialized from the spin-up simulations using varying CO2 con-

centrations and GEM meteorology.

To assess the impact of using present climate to spin up the model on the simulated carbon pools and fluxes, we also

performed a special run that used repeated meteorological data for 2009-2010 from CRU-NCEP, and constant uniform CO2 of30

387.4 ppm, and a fixed vegetation fractional coverage corresponding to the year 2009 until the model pools reach equilibrium

(hereafter CTEM-CRUNCEP2yr).
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Note that fire and land use change are not taken into account in the current model’s simulations due to the large uncertainty

in the global land use history (Houghton et al., 2012) that may yield significant biases in the simulated CO2 fluxes. Also, the

standard model parameters were not changed or tuned to improve model performance when using alternative meteorological

inputs. Hence the main differences between the CLASS-CTEM runs are the meteorological inputs, and the set-up of the spin-up

simulations.5

3.2 Forward simulation using GEM-MACH-GHG model

Forward simulations are performed using the GEM-MACH-GHG model to evaluate how well CLASS-CTEM, using meteoro-

logical inputs from GEM-MACH-GHG, is able to reproduce temporal variations in atmospheric CO2 at monitoring stations.

The estimated NEE from CTEM-CRUNCEP and CTEM-GEM were used as a surface boundary condition in GEM-MACH-

GHG, which transports the signal from the surface fluxes throughout the atmosphere, to validate the resulting modelled concen-10

trations against observations of atmospheric CO2. The other fluxes are kept the same as in Polavarapu et al. (2016). Specifically,

the anthropogenic emissions from fossil fuel burning and cement manufacturing, biomass burning, ocean-atmosphere carbon

exchange and initial atmospheric concentration (Jan 1, 2009) are based on CT2013B (Peters et al., 2007).

3.3 Inversion Analysis Configuration in the GEOS-Chem Model

Because flux inversions have been performed for over a decade with the in situ measurements, there is a considerable body of15

literature of such inversion results (e.g. Rödenbeck et al. (2003); Peters et al. (2007), and Peylin et al. (2013)). Consequently, for

our experiments, we use this observing network as opposed to a combined one that includes the more recent satellite missions.

Thus, the GEOS-Chem flux inversions use the flask observations of atmospheric CO2 collected by NOAA ESRL Carbon Cycle

Cooperative Global Air Sampling Network sites (Dlugokencky et al., 2015) and ECCC sampling sites (Worthy et al., 2009).

We use the same set of observation sites as described in Deng et al. (2014) (see their Section 2.1.2).20

In this study, we use the similar a priori CO2 fluxes of the anthropogenic emissions from fossil fuel burning and cement

manufacturing, biomass burning, and ocean-atmosphere carbon exchange described in Deng et al. (2014) in order to maximize

comparability with the those results. However, for the biospheric flux of CO2, we conducted three runs using three different

NEE priors from CTEM-GEM, CTEM-CRUNCEP, and BEPS. The optimized 3-D CO2 mixing ratio field from CarbonTracker

was used as the initial CO2 field in the inversion runs.25

4 Results and Discussion

For the meteorological data, we compare temperature, shortwave radiation, and precipitation, which are considered to be the

most important variables controlling land carbon dynamics (Piao et al., 2013). We also compare the component fluxes of GPP,

Reco, and net ecosystem exchange (NEE = Reco - GPP) in order to identify the potential drivers of differences between model

simulations. To examine regional differences, data and model output are also spatially aggregated to the 11 land regions of the30

TransCom inverse model inter-comparison project (Gurney et al., 2003).
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4.1 Differences in Meteorological Forcing

Here, we evaluate the meteorological data from GEM by comparing it against CRU-NCEP, CRU and ERAI datasets where

possible. Figure 1 shows the spatial patterns of the differences in mean annual temperature between GEM, CRU-NCEP, and

CRU for 2009 and 2010. The differences between CRU-NCEP and CRU show cold biases in middle and high Northern latitudes

and warm biases in Africa and South America. CRU-NCEP retains the monthly climatology of CRU but adds the daily and5

diurnal variations of NCEP reanalyses (Wei et al., 2014). Thus differences in annual mean temperature of CRU and CRU-NCEP

should be small by design. In contrast, GEM is warmer than CRU over the North high latitudes and generally cooler elsewhere.

The comparison also shows that CRU-NCEP is cooler than GEM in Northeastern North America, Eastern Europe, and Eastern

Asia, and warmer in Africa, Southwestern Asia, South America, and the west coastline of North America. The differences in

Figs. 1e and 1f are much larger than those seen in Figs. 1a and 1b because GEM analyses are completely independent of CRU.10

NCEP reanalyses are constrained by the global meteorological observing system and the datasets used in 2009-2010 are likely

broadly similar to that used by operational centers such as ECCC. Indeed, Zhao et al. (2006) compared meteorological fields

from NCEP, the Data Assimilation Office (DAO) (currently called the GMAO), and ECMWF for the 2000-2003 period and

found that the NCEP fields had a cold bias at all latitudes and that the bias was largest in the tropics, which is similar to the

bias in the GEM fields. Zhao et al. (2006) also found that the ECMWF ERA-40 (the precursor to ERAI) and DAO fields had15

smaller zonal mean biases compared to NCEP, but the ERA-40 fields were similar to those from GEM in that they had a high

bias at high latitudes.

To better illustrate the differences between the datasets, we have plotted in Fig. 2 the monthly mean temperature averaged for

the 11 TransCom land regions. All the data show the same seasonal variations, with opposite phases of temperature between

hemispheres. The largest differences are found in the tropics and the Southern hemisphere. GEM tends to be biased low20

compared to the other data in Northern Africa, Southern Africa and temperate South America. CRU-NCEP overall is in better

agreement with the observations (CRU). This is not surprising given that CRU-NCEP was produced by combining CRU and

NCEP/NCAR Reanalysis products.

Figure 3 shows the spatial distribution of the differences of mean annual shortwave radiation between GEM and CRU-NCEP,

and ERAI datasets for 2009 and 2010. Shortwave radiation estimates are not available in the CRU data set. The comparison25

indicates that CRU-NCEP is approximately 15-70 W m−2 higher (sunny bias) than ERAI in the high latitudes and in the

tropical land regions. In arid areas (i.e. Australia, Sahara, South Africa, Southern North America, Tibetan Plateau, and West

Asia), CRU-NCEP is approximately 15-50 W m−2 lower than ERAI. In contrast, GEM is approximately 10-60 W m−2 higher

than ERAI over all land regions, with the highest values (40-60 W m−2) over tropical lands. The shortwave radiation estimates

from GEM is approximately 10-80 W m−2 higher than those from CRU-NCEP over nearly all land regions, with the exception30

of Europe, Eastern North America and in a few grid cells in the tropical regions, where CRU-NCEP is higher (10-80 W m−2).

Figure 4 shows the monthly mean shortwave radiation averaged for the TransCom land regions. GEM and ERAI have more

similar seasonal variability compared to CRU-NCEP in most of the land regions, especially in in the tropics. However, ERAI

shows slightly lower monthly mean values in Eurasia regions, and in tropical South America. Zhao et al. (2006) also found

10
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that ERA-40 (the precursor to ERAI) underestimated shortwave radiation in the tropics. Differences between the datasets in

the tropics may be due to cloudiness biases over the Intertropical Convergence Zone (ITCZ) region, which have a large impact

on radiative forcing (Dee et al., 2011).

The comparisons of the differences in annual total precipitation between GEM, CRU-NCEP, and CRU datasets are shown in

Fig. 5. The smallest differences are between CRU-NCEP and CRU. The largest differences in magnitude between CRU-NCEP5

and CRU are mainly in the tropics, particularly tropical Asia, and along the west coast of South America. Also, the largest

differences between GEM and CRU are in the tropics. The comparison also indicates that CRU-NCEP is wetter than GEM

in the tropics and sub-tropics, and in the temperate regions, but is drier than GEM in some areas of the boreal regions, and

over a few grid cells in central Africa, and China. In general, the tropics exhibit the largest differences between the GEM and

CRU-NCEP datasets.10

The comparisons between the monthly total precipitation integrated over the TransCom land regions are shown in Fig. 6.

Unlike temperature and shortwave radiation (well represented by global models), there is a very clear difference in monthly

total precipitation among the datasets, except between CRU-NCEP and CRU, which agree very well with some differences in

the tropics. It is clear that the largest differences occur mainly during summer in each hemisphere, which is associated with high

precipitation. GEM tends to be drier mainly during summer. Despite the differences in the seasonal amplitude, GEM shows15

a quite similar seasonal variability compared to other datasets. We should keep in mind that precipitation estimates from the

reanalysis/forecast systems are normally associated with large errors (Harris et al., 2014), particularly over land. These errors

are due to problems with the convective parametrization in the models, and the fact that ground-based precipitation observations

are not yet used in the data assimilation systems. On the other hand, CRU monthly precipitation suffers large biases in areas

where observations are sparse (i.e. tropics and southern Hemisphere) (Harris et al., 2014). In fact, the observation-based datasets20

are not based only on measurements, but are also sometimes model-dependent (i.e. filling gaps, interpolation, etc) (Harris et al.,

2014). These deficiencies as well as the different spatial/temporal resolutions among models and observations can explain some

of the differences between the datasets. Deficiencies in ERAI and CRU have been investigated in previous studies (Simmons

et al., 2010; Balsamo et al., 2010; Szczypta et al., 2011).

In summary, the meteorological fields from GEM are similar in quality to those from reanalyses (ERAI) and observation-25

based (CRU and CRU-NCEP) datasets. However, there are some notable discrepancies in seasonal variations and spatial dis-

tribution patterns between GEM and CRU-NCEP, particularly in precipitation estimates in the tropics, which will be reflected

in the estimated carbon fluxes. Biases in precipitation may indicate that the convective scheme used in GEM system needs to

be improved, in particular, over the tropics. CLASS-CTEM driven by GEM precipitation will be impacted by these biases.

4.2 Impact of Meteorological Forcing on Carbon Fluxes30

Here, we assess the impact of changing meteorological inputs on the simulated carbon fluxes to determine whether biases in

fluxes can be attributed to biases in the meteorological variables.

11
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4.2.1 Differences in Simulated Carbon Fluxes

To evaluate the spin-up procedure, the simulated global values of primary carbon pools and fluxes are summarized in Table 2 for

the spin-up simulations from CTEM-CRUNCEP (which used the 1901-1940 climate data for the spin-up), and CTEM-GEM

(which used the 2009-2010 climate data for the spin-up). CTEM-GEM produces smaller values of carbon pools and fluxes

compared to CTEM-CRUNCEP. One possible explanation for this is the use of the present climate to spin up the model in the5

case of CTEM-GEM. Table 2 shows also the global values of carbon pools and fluxes simulated by the CTEM-CRUNCEP2yr

experiment, which also uses just the 2009-2010 climate to spin up the model. Rather than reducing the size of carbon pools,

CTEM-CRUNCEP2yr produces much higher values compared to both CTEM-CRUNCEP and CTEM-GEM. Table 2 also

compares the mean areal land precipitation globally as well as for the tropical land band (30◦N-30◦S) averaged over the

1901-1940 (for CTEM-CRUNCEP), and 2009-2010 (for CTEM-CRUNCEP2yr and CTEM-GEM). For the CRU-NCEP runs,10

2009-2010 is wetter than the 1901-1940 period at global and tropical scales, which can explain the higher productivity in

CTEM-CRUNCEP2yr compared to CTEM-CRUNCEP. On the other hand, GEM precipitation (2009-2010) is slightly higher

than CRU-NCEP (1901-1940) at the global scale, but lower over the tropical band for the same periods. The drier tropical band

is reflected in the estimated tropical GPP from CTEM-GEM (Table 2), which dominates the global total GPP (Beer et al. (2010),

Anav et al. (2015), and many others). This may explain the low carbon pools simulated by CTEM-GEM. This comparison15

suggests that precipitation plays a significant role in plant productivity in the tropics, and thus accurate precipitation patterns

are necessary to establish realistic initial values for carbon pools and fluxes during the spin-up runs. Despite the differences in

model inputs and spin-up configuration, the initial global carbon pools and fluxes from CTEM-GEM, however, are still within

the range of the other estimates (Melton and Arora, 2014, Table 2).

The low GPP values from CTEM-GEM warrant further discussion given that the initial estimates of carbon pools and fluxes20

are critical to obtain an accurate estimate of historical CO2 fluxes (Exbrayat et al., 2014; Tian et al., 2015). Carbon stocks are

often not well modeled in TEMs (Houghton et al., 2012; Tian et al., 2015). The modeled pool sizes can be adjusted by tuning

the model parameters in order to match observation-based estimates of carbon stocks. For example, Carvalhais et al. (2008,

2010) have reported the limitation of the carbon cycle steady state assumption in TEMs. Carvalhais et al. (2010), therefore,

introduced a new parameter in the CASA model that forced the adjustment of both vegetation and soil carbon pools from25

equilibrium (after spin-up) allowing for model runs to be initialized either as net sinks or sources. They found that including

this new parameter yielded better model performance in simulating carbon fluxes in comparison to observations. Moreover,

their modeled soil carbon stocks became closer to observations. However, large uncertainties and errors in measurements can

produce biased parameters, and hence poor model performance. Thus, forcing agreement to a given global mean value of

GPP (e.g. 120 Pg C/yr) by tuning model parameters may lead to worse model performance and is not justifiable given the30

observational uncertainty in this value. Given that CLASS-CTEM will provide only a prior estimate of NEE (at least in the first

stage) for flux inversions in EC-CAS, adjusting the initial carbon pools modeled by CLASS-CTEM is not necessary and would

not likely change the major conclusions derived here. Moreover, tuning of CLASS-CTEM specifically for the far-from-ideal

spin-up process that we employed for the GEM fields would be dubious and would make comparison with CTEM-CRUNCEP
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results difficult. Beyond the global budget, which is well constrained by atmospheric data (Peylin et al., 2013), the main focus

is to assess the ability of the model to simulate the spatial and temporal flux variations in response to changes in environmental

conditions and its ability to match the atmospheric signal.

For transient simulations, the simulated terrestrial carbon fluxes for 2009-2010 from the two simulations (CTEM-CRUNCEP

and CTEM-GEM) are compared to each other as well as to observation-based estimates (where possible) or independent model5

results. Figure 7 shows the annual spatial difference of GPP simulated by CLASS-CTEM (2009-2010) and the observation-

based GPP estimates from B10 (averaged over the period 1998 to 2005). The figure also shows the spatial difference between

the modeled GPP from BEPS and B10 and the zonal distribution of GPP from all datasets. There are significant differences

in the annual GPP between the two simulations (CTEM-CRUNCEP and CTEM-GEM) and the evaluation data, particularly in

the most highly vegetated areas (i.e. the tropics, and the boreal and temperate regions). CTEM-CRUNCEP and CTEM-GEM10

have similar spatial differences over Western Europe and boreal Asia, and to a lesser extent over North America but they

show poor agreement in the tropics. Tropical GPP from CTEM-CRUNCEP is overestimated compared to B10. In contrast, it is

underestimated in the Amazonian region, western Africa, and tropical Asia with CTEM-GEM. In comparison to other model

results, the spatial distribution of the difference between BEPS and B10 (Fig. 7a) reveals different patterns almost everywhere.

The zonally averaged GPP in Fig. 7b indicates that CTEM-CRUNCEP and BEPS agrees very well with B10 compared to15

CTEM-GEM, which underestimate GPP over the tropics.

Since the formulation of most models, including CLASS-CTEM and BEPS, links respiration to photosynthesis (Melton and

Arora, 2016), Reco estimates from both simulations and BEPS show a similar pattern to GPP (spatially and zonally), with

significant differences in the most productive ecosystems (not shown here). The large discrepancies in seasonal variations and

spatial distribution patterns between GEM and CRU-NCEP are due to the precipitation differences (temperature and shortwave20

radiation have much better agreement), particularly in the tropics. Figures 5 and 7 suggest that the differences in the spatial

pattern of GPP are more closely associated with precipitation than temperature or shortwave radiation differences over the

tropics. This is consistent with previous findings (Nemani et al., 2003; Jung et al., 2007; Beer et al., 2010; Piao et al., 2013;

Anav et al., 2015) that interannual variation of productivity is primarily correlated with the precipitation over the tropics.

To examine regional differences, the seasonal variation and the annual mean of GPP from both simulations, and BEPS are25

also spatially aggregated to the 11 TransCom land regions in Fig. 8. For Reco (not shown here), the same conclusions can be

drawn as from the GPP figures. Figure 8 shows that the seasonal variations of GPP from CTEM-CRUNCEP are consistently

higher than those from CTEM-GEM. In the northern hemisphere regions, flux estimates have large seasonal variations, i.e.,

small values in winter and high values in summer, reflecting the seasonal change in carbon uptake by the land vegetation. The

largest differences between CTEM-CRUNCEP and CTEM-GEM, in terms of the amplitude of the seasonal cycle, are found30

in the tropics, with CTEM-GEM having smaller amplitudes. However, in tropical Asia, the seasonal cycle from CTEM-GEM

agrees well with BEPS compared to CTEM-CRUNCEP, which has larger annual GPP and Reco (not shown here). In general,

CTEM-GEM have some differences compared to CTEM-CRUNCEP over all regions mainly in terms of the amplitude, and to

a lesser extent in the phase of the seasonal cycle. This is consistent with the findings of Dalmonech et al. (2015) who tested the

impact of coupled and uncoupled configurations of JSBACH land surface component of the Max Planck Institute Earth System35
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Model (MPI-ESM) on the simulated land carbon fluxes. They found that biases in the meteorological forcing to a large extent

control the magnitude of GPP rather than the phenology and seasonal cycle of productivity, which could be more related to the

model formulations (i.e. the timing and length of the growing season).

The annual GPP, Reco, and the net flux are given in Table 3. Annual GPP values from CTEM-GEM for 2009 and 2010 are

smaller than the multi-year average of GPP from BEPS (119.5 Pg C) (Deng et al., 2014), and from B10 (123 ±8 Pg C). On5

the other hand, annual GPP values from CTEM-CRUNCEP for 2009 and 2010 are higher than those from BEPS and B10.

This leads to a stronger land carbon sink from CTEM-CRUNNCEP compared to CTEM-GEM (Table 3). The weaker sink in

CTEM-GEM is due to the lower precipitation estimates in the tropics (the region that mainly controls interannual variability in

the carbon cycle), and hence lower global GPP (Piao et al., 2013; Beer et al., 2010).

To assess the impact of the differences in GPP and Reco from CTEM-CRUNCEP and CTEM-GEM on the seasonal cycle10

of NEE (the difference between GPP and Reco), Fig. 9 compares the NEE seasonal cycle from both simulations with the

simulated prior NEE from BEPS (multi-year average) and the optimized NEE from CT2013B for 2009 and 2010 over the

TransCom land regions. BEPS produces the smallest amplitude of the seasonal cycle of NEE while CTEM-CRUNCEP has the

largest amplitude in northern land regions, except boreal Eurasia where the optimized NEE from CT2013B exhibits the largest

amplitude (Fig. 9). For the South American tropical region, all models show considerable disagreement in the seasonal cycle,15

sometimes with opposite phases. In the northern hemisphere, CTEM-GEM and CTEM-CRUNCEP have better agreement with

each other during winter than in summer. CTEM-GEM also tends to have the peak of the growing season one month earlier

than CTEM-CRUNCEP (i.e. Eurasian boreal and North America temperate) due to the differences in GPP seasonal cycle (see

Fig. 8). Even though there is large difference in the amplitude of the seasonal cycle of GPP (the same for Reco - not shown

here) from CTEM-GEM compared to CTEM-CRUNCEP (Fig. 8), the difference is much smaller in NEE. This is due to the20

fact that NEE is the difference between two large terms (GPP and Reco). That means, even though GPP and Reco have large

biases compared to observation-based estimates, the biases in NEE are much smaller.

Despite the significant differences in model inputs, and differences in model structure and methods, the CTEM-GEM flux

estimates are within the range of the other estimates from TEMs used as a priori estimates in flux inversions (i.e. BEPS) or

measurement-constrained fluxes (i.e. CT2013B). Accordingly, the prior information from CTEM-GEM is considered to be25

suitable for testing in the data assimilation context. However, flux estimates in the tropics from CTEM-GEM should be treated

with caution.

4.2.2 Modelled CO2 Concentration

To assess the quality of the CO2 fluxes from CLASS-CTEM simulations, terrestrial NEE fluxes from CTEM-CRUNCEP

and CTEM-GEM are used as a priori land fluxes in the GEM-MACH-GHG global atmospheric CO2 transport model. For30

comparisons, GEM-MACH-GHG was also run using the posterior NEE fluxes from CT2013B as described in Polavarapu et al.

(2016). In these forward simulations, the anthropogenic emissions from fossil fuel burning and cement manufacturing, biomass

burning, ocean-atmosphere carbon exchange are based on CT2013B (Peters et al., 2007) so that the only difference between

the three runs is the terrestrial NEE fluxes.
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Figure 10 compares the modeled CO2 time series from the two CLASS-CTEM simulations with that based on the CT2013B

posterior fluxes, and with observed CO2 at Alert Bay, Canada (82.45◦N, 62.52◦W) and Mauna Loa, Hawaii (19.53◦N,

155.58◦W) (Worthy et al., 2009; Dlugokencky et al., 2015). At both observation sites, the simulations forced with CTEM-

CRUNCEP and CTEM-GEM NEE fluxes (red and blue curves) have a similar overestimation of the observed atmospheric

CO2 from December to June, but the simulation forced with CT2013B fluxes (green curves) has a much better match to ob-5

servations. This makes sense because CT2013B fluxes have been informed by atmospheric observations whereas the other

two fluxes have not. The differences between the modeled and observed CO2 might also indicate deficiencies in the seasonal

cycle of flux estimates from CTEM-CRUNCEP and CTEM-GEM. Interestingly, for Alert, the simulation forced with CTEM-

GEM has a better match to observations during the autumn of both years compared to those driven by CTEM-CRUNCEP and

CT2013B, which underestimate atmospheric CO2. As explained in Polavarapu et al. (2016), the autumn underestimation at10

Alert with CT2013B fluxes is likely due to a mismatch in seasonal-scale meridional transport between GEM-MACH-GHG

and TM5 (the model used to produce CT2013B). For Mauna Loa, CTEM-GEM has worse agreement with the observations,

especially during winter. The overestimation of atmospheric CO2 at Mauna Loa with CTEM-GEM is likely due to the less net

uptake over the tropics as discussed before.

Figure 11 shows the zonal mean CO2 for the 3 simulations (CTEM-CRUNCEP, CTEM-GEM, and CT2013B) for selected15

winter and summer dates. In general, the zonal mean fields from the three simulations have good agreement in the upper levels

with the greatest differences near the surface. In winter, the CTEM-GEM simulation (center panels) produces high net emission

(less carbon uptake) over the northern hemisphere, while CTEM-CRUNCEP (left panels) and CT2013B (right panels) show

quite similar zonal means. In summer the CTEM-CRUNCEP simulation shows higher CO2 over the northern hemisphere

compared to CTEM-GEM and CT2013B, which have better agreement but to a lesser extent in summer 2010.20

Overall, the comparison reveals that the modelled CO2, at Alert and Mauna Loa, from both CTEM-CRUNCEP and CTEM-

GEM are generally in agreement, despite the differences in the meteorological inputs and the spin-up approach. Thus, despite

the imperfect TEM spin-up procedure used for CTEM-GEM and the change in meteorological forcing, the simulation driven

by retrieved fluxes (CT2013B) is similar to that achieved with CLASS-CTEM prior fluxes. This result is consistent with the

finding of (Ott et al., 2015) that large differences in prior flux estimates result in only small differences in CO2 concentrations.25

The reason is that once the fluxes enter the atmosphere, the gradients they create are slowly smoothed out by various modes of

atmospheric variability. Thus, concentrations reflect the time integrated history of past fluxes smoothed by atmospheric mixing.

4.3 Inversion Analyses

The results in the previous two sections revealed that the GEM-MACH-GHG simulation of atmospheric CO2 using CTEM-

GEM and CTEM-CRUNCEP fluxes are comparable. They also indicate that the model driven with CTEM-GEM fluxes is30

able to reproduce temporal variations in atmospheric CO2 at the selected sites. Since CTEM-GEM will be used as the land

component of EC-CAS, which is presently under development and thus not yet available, here we use the GEOS-Chem data

assimilation system to examine the impact on regional flux estimates of using CTEM-GEM and CTEM-CRUNCEP as prior

fluxes in the context of an atmospheric CO2 inversion analysis. To determine how the retrieved fluxes obtained with the two

15
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CTEM-based priors compare to other documented inverse modelling results, we also perform an inversion analysis using BEPS

prior fluxes, which is the ecosystem model used in the GEOS-Chem inversions of Deng et al. (2014, 2016), and we compare

our results to the retrieved fluxes from CT2013.

4.3.1 Seasonal Cycle of the Flux Estimates

Figure 12 shows the seasonal cycle of the a posteriori NEE from the GEOS-Chem inversion analyses using the three different a5

priori estimates of NEE (CTEM-GEM, CTEM-CRUNCEP, and BEPS), together with the optimized NEE from CT2013B. The

a priori NEE from CTEM-GEM, CTEM-CRUNCEP and BEPS are also shown. For northern land, there is good agreement

between the optimized NEE in terms of the amplitude and the growing season, except in boreal Eurasia where the peak

carbon uptake is greatest for CT2013B. Since the range of various posteriors can be taken as an estimate of the uncertainty of

flux retrievals (e.g., Gurney et al., 2004; Peylin et al., 2013), we conclude that the CTEM-based posterior estimates for most10

northern land regions are comparable to those from CT2013B and BEPS. This occurs because the surface observation network

can reasonably constrain the northern extratropical latitudes (Peylin et al., 2013). However, the spread between the fluxes is

larger in the tropical regions, where NEE seasonal cycles show less agreement in both phase and magnitude. There are large

differences in the seasonal cycle between the CTEM-based fluxes (CTEM-CRUNCEP and CTEM-GEM) and the BEPS-based

fluxes in northern Africa and tropical South America that are present in both the prior and posterior fluxes. As a result of the15

limited observational coverage in the tropics, the posterior fluxes are strongly influenced by the prior fluxes. Consequently, the

differences in the prior fluxes across the inversions are reflected in the posterior fluxes. Similarly, in the southern extratropics

the posterior fluxes primarily reflect the prior flux distributions due to the sparsity of observations. This result is consistent

with that of Peylin et al. (2013) who also found more disagreement of various inversion results in the tropics and southern

hemisphere.20

The amplitude of seasonal cycle of the optimized NEE from CTEM-CRUNCEP is significantly reduced compared to the a

priori seasonal cycle in almost all land regions. The changes in the amplitude of the seasonal cycle for CTEM-GEM are smaller

than those for CTEM-CRUNCEP. This might indicate that CTEM-GEM has the ability to simulate the seasonal cycle of CO2

fluxes that is more consistent with the atmospheric CO2 signal.

4.3.2 Annual Mean Flux Estimates25

The total annual a priori and a posteriori NEE from the GEOS-Chem inversion analyses for 2009-2010 are shown in Fig.

13 for the 11 land TransCom regions, along with the optimized values from CT2013B. Note that the tropical Asia panel has

a different scale. All models estimate a sink (both for the a priori and the a posteriori) for the North America temperate,

South American tropical, and Eurasian regions (except for temperate Eurasia, which has a source for CTEM-GEM prior).

The largest difference between the a priori and a posteriori NEE in terms of the sign and magnitude were obtained for the30

Southern American temperate and Northern and Southern African regions. This is due to the fact that the tropics and Southern

Hemisphere are poorly constrained by the current CO2 network. Although the CT2013B fluxes tend to have stronger uptake in

boreal Eurasia and the two African regions, BEPS has the largest uptake in the extra-tropical regions (North America temperate,
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Europe, Eurasia temperate) and tropical Asia. Some of the difference between CT2013B and all of the GEOS-Chem estimates

can be attributed to different transport models and configurations of data assimilation (Peylin et al., 2013) used in GEOS-

Chem and CT2013B (uses Tracer Transport Model - version 5 (TM5) (Peters et al., 2007)). Figure 13 also indicates that,

for 2009, GEOS-Chem allocates the strongest sink in Tropical Asia for CTEM-CRUNCEP (2 Pg C year−1). Given that the

inversion with CTEM-CRUNCEP fluxes suggest much weaker sinks (or larger sources) for the South American Tropical and5

Northern African regions compared to CTEM-GEM and BEPS, we suspect that stronger uptake in tropical Asia could reflect

the inversion compensating for the larger sources in tropical south America and northern Africa. The hypothesis is that CTEM-

CRUNCEP start with a larger a priori sink in tropical Asia and it gets enhanced in the inversion to compensate for the other

tropical regional biases.

Figure 14 shows the global annual totals of NEE (a priori and a posteriori) for 2009-2010, as well as annual totals, aggregated10

into three latitudinal bands: Southern Hemisphere (SH):90 S - 30◦ S, Tropics (TR): 30◦ S - 30◦ N, and Northern Hemisphere

(NH): 30◦ N - 90◦ N). At the global scale, there is a good agreement between the optimized NEE in terms of magnitude. This

indicates that the observations sufficiently constrain the global carbon budget so that the choice of prior fluxes is not critical.

This is in agreement with Bruhwiler et al. (2011) who examine the impact of changing observation networks on flux estimates.

However, optimized NEE for the three latitudinal bands show some differences, mainly in the tropics, where the observational15

coverage is poor.

These results are consistent with previous findings (e.g., Peters et al., 2007; Miller et al., 2015), which showed that optimized

CO2 fluxes in inversion analyses are heavily influenced by the spatial patterns in the a priori CO2 fluxes, particularly in regions

where observations are sparse (i.e. tropics and southern Hemisphere).

4.3.3 Evaluation of the Inversions20

To more effectively evaluate the assimilation results, we compare the a posteriori CO2 fields with independent data that were

not ingested in the assimilation. Listed in Table 4 are the mean differences and root-mean-square errors (RMSEs) of the a

posteriori CO2 relative to TCCON data in 2009 and 2010. All three fluxes reproduce the TCCON data well, but the BEPS-

based CO2 fields have the smallest RMSEs of 1.22 ppm and 1.18 ppm with respect to the data in 2009 and 2010, respectively.

We find that the RMSEs for the CO2 fields based on the CTEM-GEM fluxes are smaller than those from the CTEM-CRUNCEP25

fluxes, with values of 1.24 ppm and 1.39 ppm in 2009 and 2010, compared to 1.42 ppm in both years for the fields from CTEM-

CRUNCEP fluxes. We also compare the a posteriori CO2 fields with HIPPO aircraft data in the lower troposphere (see Table 5).

As with the comparison to TCCON data, we find that the a posteriori fields based on BEPS fluxes produce the smallest RMSEs

relative to the aircraft data, with the fields from CTEM-GEM fluxes producing smaller RMSEs than those obtained from the

CTEM-CRUNCEP fluxes. For the HIPPO-1 campaign, the a posteriori fields based on CTEM-CRUNCEP fluxes produce the30

smallest mean difference (-0.01 ppm), whereas for HIPPO-2 and HIPPO-3 the a posteriori CO2 fields based on the BEPS and

CTEM-GEM fluxes produce the smallest mean differences (-0.41 ppm and 0.16 ppm), respectively. Overall, the comparisons

show that that CTEM-GEM provides relatively better agreement (in terms of the RMSEs) with the independent observations
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compared to CTEM-CRUNCEP. This implies that the spatial pattern of the a priori fluxes from CTEM-GEM provides a better

constraint than CTEM-CRUNCEP for the inversion system.

5 Conclusions

CLASS-CTEM will be used to provide first-guess (a priori) terrestrial fluxes for the Environment Canada Carbon Assimilation

System (EC-CAS) (Polavarapu et al., 2016). The transport model of EC-CAS that relates surface fluxes to atmospheric CO25

concentrations is based on the GEM-MACH-GHG model (Polavarapu et al., 2016). To ensure consistency between the land

and transport model, CLASS-CTEM will be driven by the standard meteorological forcing simulated (24 h forecast) by GEM-

MACH-GHG. Therefore, the main focus of this study was to assess the impact of using the meteorological inputs from GEM-

MACH-GHG in simulating both regional and global carbon fluxes by CLASS-CTEM.

We first evaluated the quality of the meteorological inputs from GEM-MACH-GHG against the standard meteorological forc-10

ing (CRU-NCEP) that is used to drive the latest versions of CLASS-CTEM, as well as against observation-based or reanalysis

datasets. The comparison between the datasets indicates that the meteorological fields from GEM-MACH-GHG used in this

study are similar in quality to those from observations-based datasets (CRU and CRU-NCEP) and reanalysis (ERA-Interim).

The comparison also shows that radiation and temperature data from GEM-MACH-GHG and CRU-NCEP are in good agree-

ment. However, there are some notable discrepancies between GEM and CRU-NCEP in terms of seasonal variations and spatial15

patterns of precipitation estimates, especially in the tropics, with GEM being drier than CRU-NCEP, ERA-Interim, and CRU.

That might indicate that the convective scheme used in GEM-MACH-GHG system needs to be improved in particular over the

tropics.

The differences in the precipitation fields between GEM-MACH-GHG and CRU-NCEP was reflected in the estimated car-

bon fluxes (GPP and Reco). The amplitude and, to a lesser extent, the phase of the seasonal cycle are different between the20

two simulations, especially in the tropics. This is consistent with the findings of Dalmonech et al. (2015), who found that

meteorological biases significantly control the magnitude of the productivity rather than the phenology and the seasonal cycle

of carbon fluxes. Fluxes produced with GEM meteorology were obtained using a modified spin-up procedure based on current

climate only. While it is clearly unsatisfactory to use a short climatology to spin-up carbon pools, it is an inevitable problem

when coupling a TEM to an assimilation system since the latter focus on only a few years at a time. Moreover, operational25

weather assimilation systems are constantly changing so long datasets of analyses are simply not possible to obtain. Despite

the deficiencies in the spin-up procedure, the fluxes produced from CTEM-GEM were comparable in quality to those produced

from CTEM-CRUNCEP. Moreover, the global constraint from observations is sufficient to determine the global budget irre-

spective of the choice of a priori flux. In fact, some inverse models use a neutral annual a priori flux to better assess the ability

of the observations to constrain the flux estimates (Deng et al., 2014). However, regional flux estimates are affected by the30

choice of a priori flux, particularly in data poor regions such as the tropics and southern hemisphere. Overall, the CTEM-GEM

prior flux estimates are within the range of the other estimates from BEPS or top-down approaches (i.e. CT2013B), despite the

significant differences in the model structure/approaches. However, flux estimates over the tropics from CTEM-GEM should
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be treated with caution due to the negative biases in the precipitation fields compared to all other datasets (i.e. ERA-Interim,

CRU, and CRU-NCEP).

To assess their ability to model CO2 at monitoring stations, NEE fluxes from CTEM-CRUNCEP and CTEM-GEM were

used as a priori land fluxes in the GEM-MACH-GHG global atmospheric CO2 transport model. The comparison indicated

that the simulated CO2 based on CTEM-GEM compared reasonably well with observed CO2 in terms of temporal variations.5

However, the time series of the modelled CO2 at the two selected sites indicated some difficulties in capturing the seasonal

cycle of the observations, which can be attributed to the deficiencies in simulating the seasonal cycle of NEE from CLASS-

CTEM in terms of phase as well as the magnitude, especially for the fluxes based on the CRU-NCEP meteorological data. The

deficiencies in simulating the seasonal cycle was also noticed in the study by Arora et al. (2009), who compared simulated

monthly CO2 from CanESM1 (CTEM used as the land component of that model) against observations at selected sites and10

found that there was a shift in the seasonal cycle (about a month later) at Barrow, Niwot Ridge, and Mauna Loa (see their

Figure 11). The study by Anav et al. (2013), which compared 18 Earth system models, also showed that CanESM2 has some

limitations reproducing the net uptake of carbon during spring and summer months.

To examine the impact of using fluxes from CTEM-GEM and CTEM-CRUNCEP as a priori flux estimates in atmospheric in-

version analyses, we used the GEOS-Chem data assimilation system since EC-CAS is still under development. We assimilated15

in situ atmospheric CO2 observations from the surface network to estimate optimized monthly mean NEE fluxes for 2009-

2010. The time series of the estimated fluxes, integrated over different land regions, revealed that the optimized NEE is shifted

from its a priori pattern in order to fit the data. For comparison with the CTEM-based fluxes we also used BEP fluxes (Deng

et al., 2014) as an a priori in the inversion analyses. We found that the CTEM-based optimized fluxes produced atmospheric

CO2 concentrations that were consistent with those based on BEPS. For example, the mean differences between independent20

TCCON data in 2010 and the modeled CO2 based the CTEM-GEM, CTEM-CRUNCEP, and BEPS optimized fluxes were

0.80, 0. 78, and 0.54 ppm, with RMSEs of 1.39, 1.42, and 1.18 ppm, respectively. For observations from the HIPPO-3 aircraft

campaign, the mean differences between the observations and the CO2 simulated from the optimized CTEM-GEM, CTEM-

CRUNCEP, and BEPS fluxes were 0.16, 0.26, -0.28 ppm, with RMSEs of 0.94, 1.04, and 0.87 ppm, respectively. The results

are promising for the EC-CAS project as they demonstrate that the CTEM-GEM fluxes can provide useful a priori fluxes for25

the global inversion system. When incorporated into the GEOS-Chem assimilation system, the inversion is capable of correct-

ing the CTEM-GEM fluxes over annual and seasonal time scales in order to match the variability in the atmospheric data. In

addition, the results of the optimized fluxes as well as the comparison of the a posteriori CO2 to observations suggests that

the spatial pattern of the a priori fluxes from CTEM-GEM provide a better constraint than CTEM-CRUNCEP for the inversion

system.30

Finally, this study provided insights into the deficiencies in the model, and data constraints (both meteorological and at-

mospheric CO2 data). By coupling CLASS-CTEM into EC-CAS, a CCDAS approach becomes possible where observational

constraints give feedback on a TEM. Ultimately, such an approach can help to improve the performance of CLASS-CTEM,

and thus improve the CanESM which is used to address the question of the feedback between climate change and the carbon

cycle.35
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Code and data availability. Fortran code for CLASS-CTEM modelling frame-work is available on request and upon agreeing to ECCC’s

licensing agreement available at: http://collaboration.cmc.ec.gc.ca/science/rpn.comm. Please contact the coauthor, Joe Melton (joe.melton@

canada.ca), to obtain model code. The GEM and GEM-MACH source codes are integrated into the unique operational computing envi-

ronments of ECCC. These source codes are copyrighted but are available upon request subject to the GNU Lesser General Public License

(LGPL v2.1) agreement (contact the coauthor, Michael Neish (Michael.Neish@canada.ca)). Some documentation on GEM is available at:5

http://collaboration.cmc.ec.gc.ca/science/rpn/gem/gemdm/gemdm.html and http://collaboration.cmc.ec.gc.ca/science/rpn/gef_html_public/.

ECCCs model output data are available at: https://weather.gc.ca/grib/index_e.html. The GEOS-Chem model, including the adjoint code, is

freely available to the public and is distributed through GitLab. Instructions for obtaining and running the model are available on the GEOS-

Chem wiki: (http://wiki.seas.harvard.edu/geos-chem/). The NOAA in situ CO2 observations used in the inversion analysis are available from

ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/. All data generated by CLASS-CTEM is available from ECCC upon completion10

of a licensing agreement.
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a) (CRU-NCEP) - (CRU) : (2009) b) (CRU-NCEP) - (CRU) : (2010)

c) (CRU) - (GEM) : (2009) d) (CRU) - (GEM) : (2010)

e) (CRU-NCEP) - (GEM) : (2009) f) (CRU-NCEP) - (GEM) : (2010)

Figure 1. Comparison of spatial distribution patterns of annual mean temperature (◦C) for 2009 and 2010: (a and b) CRU-NCEP minus

CRU, (c and d) CRU minus GEM , and (e and f) CRU-NCEP minus GEM.
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Figure 2. Monthly mean temperature (◦C) averaged for the TransCom land regions.
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a) (CRU-NCEP) - (ERAI) : (2009) b) (CRU-NCEP) - (ERAI) : (2010)

c) (GEM) - (ERAI) : (2009) d) (GEM) - (ERAI) : (2010)

e) (CRU-NCEP) - (GEM) : (2009) f) (CRU-NCEP) - (GEM) : (2010)

Figure 3. Comparison of spatial distribution patterns of annual mean shortwave radiation (W m−2) for 2009 and 2010: (a and b) CRU-NCEP

minus ERAI, (c and d) GEM minus ERAI, and (e and f) CRU-NCEP minus GEM.
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Figure 4. Monthly mean shortwave radiation (W m−2) averaged for the 11 TransCom land regions.
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(a) (CRU-NCEP) - (CRU) : (2009) (b) (CRU-NCEP) - (CRU) : (2010)

(c) (CRU) - (GEM): (2009) (d) (CRU) - (GEM) : (2010)

(e) (CRU-NCEP) - (GEM) : (2009) (f) (CRU-NCEP) - (GEM) : (2010)

Figure 5. Comparison of spatial distribution patterns of annual total precipitation (mm year−1) for 2009 and 2010: (a) and (b) CRU-NCEP

minus CRU, (c) and (d) CRU minus GEM, and (e) and (f) CRU-NCEP minus GEM.
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Figure 6. Monthly total precipitation (mm month−1) for the 11 TransCom land regions.
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a) (BEPS) - (B10) b) Zonally averaged GPP
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Figure 7. The annual spatial difference of GPP (gC m−2 year−1) for CTEM-GEM, CTEM-CRUNCEP, and BEPS for 2009 and 2010 against

the observation-based GPP estimates from B10 (averaged over the period 1998 to 2005). The zonal distributions of GPP from all datasets are

shown (top-right).
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Figure 8. The seasonal cycle of GPP from CTEM-GEM, CTEM-CRUNCEP, and BEPS integrated over the 11 TransCom land regions.
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Figure 9. The seasonal cycle of NEE from CTEM-GEM, CTEM-CRUNCEP, and BEPS in comparison to the optimized NEE from CT2013B

integrated over the 11 TransCom land regions.
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Figure 10. Comparison of modelled CO2 using land prior fluxes from CTEM-CRUNCEP (red) and CTEM-GEM (blue) with surface ob-

servations (black) at Alert (top), and Mauna Loa (bottom), and modelled CO2 using posterior fluxes from CT2013B (green). The modelled

CO2 was produced by a forward run of GEM-MACH-GHG.
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CTEM-CRUNCEP CTEM-GEM CT2013B
Zonal mean CO2 (in ppm) - 2009-07-01 00:00

Zonal mean CO2 (in ppm) - 2009-12-31 00:00

Zonal mean CO2 (in ppm) - 2010-07-01 00:00

Zonal mean CO2 (in ppm) - 2010-12-31 00:00

Figure 11. Zonal mean CO2 on 1 July 2009 and 31 Dec. 2010 (top two rows), and 1 July 2009 and 31 Dec. 2010(bottom two row) for

CTEM-CRUNCEP (left column), CTEM-GEM (middle column), and CT2013B (right column). The modelled CO2 was produced by a

forward run of GEM-MACH-GHG.
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Figure 12. The The seasonal cycle of the optimized NEE from GEOS-Chem using three different prior estimates of NEE from CTEM-GEM,

CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the the optimized NEE from CT2013B integrated over the 11 TransCom

land regions.
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Figure 13. The annual total of the optimized NEE from GEOS-Chem using three different prior flux estimates of NEE from CTEM-GEM,

CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the the optimized NEE from CT2013B integrated over the 11 TransCom

land regions.
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Figure 14. The monthly (left) and annual total (right) of the optimized NEE from GEOS-Chem using three different prior flux estimates

of NEE from CTEM-GEM, CTEM-CRUNCEP, and BEPS (indicated as well) in comparison to the the optimized NEE from CT2013B

integrated over three latitudinal bands.
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Table 1. TCCON sites used in this study.

Site Name Lat Lon Reference

Eureka, Canada 80.05 N 86.42 W Strong et al. (2014)

Sodankyla, Finland 67.37 N 26.63 E Kivi et al. (2014)

Bialystok, Poland 53.23 N 23.03 E Deutscher et al. (2014)

Bremen, Germany 53.10 N 8.85 E Notholt et al. (2014)

Karlsruhe, Germany 49.10 N 8.44 E Hase et al. (2014)

Orleans, France 47.97 N 2.11 E Warneke et al. (2014)

Garmisch, Germany 47.48 N 11.06 E Sussmann and Rettinger (2014)

Park Falls, USA 45.95 N 90.27 W Wennberg et al. (2014a)

Lamont, USA 36.60 N 97.49 W Wennberg et al. (2014b)

Izana, Tenerife, Spain 28.3 N 16.5 W Blumenstock et al. (2014)

Darwin, Australia 12.42 S 130.90 E Griffith et al. (2014a)

Wollongong, Australia 34.41 S 150.88 E Griffith et al. (2014b)

Lauder, New Zealand 45.04 S 169.68 E Sherlock et al. (2014)

Table 2. Simulated global values of primary carbon pools and fluxes for the spin-up simulations using CTEM-CRUNCEP, CTEM-GEM

and CTEM-CRUNCEP2yr. Values are a 20 year average at the end of model simulations. Mean areal precipitation (global land and for the

30◦N-30◦S land band) averaged for the 1901-1940 period used to spin-up CTEM-CRUNCEP, and for the 2009-2010 period used to spin-up

CTEM-GEM and CTEM-CRUNCEP2yr, and the correspondence GPP estimates.

Variable CTEM-CRUNCEP CTEM-GEM CTEM-CRUNCEP2yr

Gross primary productivity (Pg C yr−1) 118.0 97.0 139.8

Net primary productivity (Pg C yr−1) 58.0 47.0 70.0

Autotrophic respiration (Pg C yr−1) 60.5 49.6 69.8

Heterotrophic respiration (Pg C yr−1) 57.5 47.4 70.0

Litter carbon respiration (Pg C yr−1) 40.8 33.4 49.4

Soil carbon respiration (Pg C yr−1) 16.7 13.7 20.5

Vegetation biomass (Pg C) 674.0 544.0 829.2

Litter mass (Pg C) 97.0 79.0 108.9

Soil carbon mass (Pg C) 1410.0 1162.0 1843.0

Mean areal precipitation (mm yr−1) (global) 760.0 762.0 828.0

Mean areal precipitation (mm yr−1) (30◦N-30◦S) 1047.0 984.0 1139.0

Gross primary productivity (Pg C yr−1) (30◦N-30◦S) 80.7 60.9 95.5
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Table 3. Annual GPP, Reco, and NEE (Pg C year−1) from CTEM-CRUNCEP and CTEM-GEM for the transient simulations. The transient

simulation was initialized from the spin-up simulations using varying CO2 concentrations and meteorology.

CTEM-CRUNCEP CTEM-GEM other estimates

2009 2010 2009 2010 multi-year average

GPP 133.6 137.4 99.3 100.9 119.5 (Deng et al., 2014)

123 ±8 (Beer et al., 2010)

Reco 130.4 132.2 98.1 98.7

NEE -3.2 -5.2 -1.2 -2.2

Table 4. The mean differences and RMSEs (in ppm) of the a posteriori CO2 fields, based on CTEM-CRUNCEP, CTEM-GEM, and BEPS

fluxes, with respect to TCCON data in 2009 and 2010.

Mean (mod − obs) RMSE (mod − obs)

CTEM-CRUNCEP CTEM-GEM BEPS CTEM-CRUNCEP CTEM-GEM BEPS

2009 0.13 0.27 0.50 1.42 1.24 1.22

2010 0.78 0.80 0.54 1.42 1.39 1.18

Table 5. The mean differences and RMSEs (in ppm) of the a posteriori CO2 fields, based on CTEM-CRUNCEP, CTEM-GEM, and BEPS

fluxes, with respect to aircraft data from the HIPPO-1, HIPPO-2, and HIPPO-3 campaigns.

Mean (mod − obs) RMSE (mod − obs)

CTEM-CRUNCEP CTEM-GEM BEPS CTEM-CRUNCEP CTEM-GEM BEPS

HIPPO-1 -0.01 -0.11 -0.20 2.85 2.65 1.90

HIPPO-2 -0.69 -0.67 -0.41 1.84 1.77 1.55

HIPPO-3 0.26 0.16 -0.28 1.04 0.94 0.87
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